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ABSTRACT

ARCTIC ICE DYNAMICS JOINT EXPERIMENT 1975-1976

PHYSICAL OCEANOGRAPHY DATA REPORT
PROFILING CURRENT METER DATA - CAMP CARIBOU

VOLUME 1

by T.O. Manley, Kenneth Hunkins, and Werner Tiamann

The c-eanographic program of the 1975-1976 ARCTIC ICE DYNAMIC

JOINT EXPERIMENT (AIDJEX) was designed to investigate the Arctic Ocean

on space scales of 100 kilometers in the horizontal and hundreds of meters in

the vertical. This was accomplished with oceanographic observations from

a triangular array of three smaller manned satellite camps with a centrally

located larger main camp. The radio call signs of the satellite camps were

Caribou, Blue Fox, and Snowbird, the main camp being designated Big Bear.

Profiles of relative current speed and direction were measured twice

each day between the surface and 200 meters at each of the four camps. A

profiling current meter (PCM) with speed, direction and depth sensors was

lowered and retrieved with a multi-conductor cable at a slow rate of 5 meters

per minute. Sensor signals were transmitted by cable to be recorded graph-

ically and digitally at the surface. Digital recording of the data at a slow

rate of I scan per half minute along with a low signal-to-noise ratio made it

preferable to manually digitize the analog charts to preserve as much infor-

mation as possible.

The final data set consisting of absolute velocity profiles of speed

and direction was obtained by the vector addition of the relative PCM pro-

files with the interpolated ice velocity based on precise satellite navigation

at the time of the observation. Data reduction problems included a hyster-

esis effect between up and down traces due to cable angle, directional spikes

resulting from a rapid sensor package rotation, and spurious results when

low velocities are added vectorially.
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I Relative speed between the ice and water in the upper mixed layer is

often small indicating that this layer closely follows the ice motion. Persistent

large clockwise shears in relative current direction occur sometimes in the

mixed layer, attaining up to 540 degrees of rotation. These are best seen in

the relative velocity data. Upon the addition of the ice velocity vector, to

produce absolute velocities, the smooth relative directional shear of the Ekman

spiral then exhibits local shears and speed minimums. This is due to the di-

rections and speeds in the spiral being opposite or nearly opposite to the ice

velocity vector and of comparable magnitude.

One of the most striking features of the current profiles is the appear-

ance from time to time of swift currents below the mixed layer with speeds at-

taining 60 cm/sec. The depth of maximum velocity ranges from 80 to 190

meters. Although evidence of swift transient undercurrents had been ob-

served in the Arctic Ocean as early as 1937, it was not until 1974 that these

j currents were shown to be associated with mesoscale eddies.

This data report deals only with the absolute velocity data obtained

from the profiling current meter at Camp Caribou. PCM data for Camps Blue

Fox, Snowbird and Big Bear are in separate volumes (Manley et al., 1980).

Data reports pertaining to the salinity-temperature-depth (STD) data taken

at the manned AIDJEX camps are also in separate volumes (Bauer et al., 1980).
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INTRODUCTION

The objective of the AIDJEX oceanographic program was to monitor

velocity and mass fields in the upper levels of the Arctic Ocean from the four

manned camps in order to provide an understanding of the interaction between

ice and water.

The initial deployment of the manned camps began in March of 1975

with the establishment of the main camp, Big Bear. The satellite camps were

then established during the next month and a half. The scientific program

at each camp began as soon after its establishment as possible. Inclusive

dates for the beginning and ending of the profiling current meter work done

at each camp is listed in Table 1. Big Bear broke up in early October of

1975 and its scientific and logistic functions were transferred to the satellite

camp Caribou. All of the other camps remained in operation until the closing,

according to schedule, in May 1976. Figure I shows the position of the camps

during the initial deployment in March of 1975.

The drift tracks that each camp made during the duration of the ex-

periment are shown in Figures 2 through 5. A thumbnail sketch locates the

plotted region with respect to the Alaskan and Canadian coasts. The aster-

isks indicate the positions at integral multiples of 20 days. The beginning

and ending days are noted for each trajectory. A dashed line indicates a

period of missing data. The region is 500 kilometers by 500 kilometers

aligned with the x-y coordinate system shown in Appendix 1. Figures 2-5

were taken from Thorndike and Cheung, 1977.
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The largest horizontal scale sampled by the PCM observations was

the nominal 100 kilometer spacing of the manned camps, the smallest was the

distance between successive casts at one camp. The maximum vertical scale

sample was limited by the 200 meter depth of the profiling current meter casts.

The smallest vertical scale sampled was about 10 meters and was determined

by the response rate of the instrument and its rate of ascent and descent.

The AIDJEX oceanographic program maintained fixed-mast current

meters of uniform type (Hydro Products) at all camps at shallow depths in the

planetary boundary layer. The fixed-mast current meters at each camp were

suspended on a series of rigid 3 meter, 7.5 cm diameter, PVC sections at depths

of 2 and 30 meters below the base of the ice. Hourly averages pertaining to

the fixed-mast current meters can be obtained through the National Oceano-

graphic Data Center.

The directional sensors of the fixed-mast current meters were refer-

enced to the instrument case and therefore had to be referenced to the camp

azimuth to provide directions relative to true north. This was accomplished

by accurately drilling the coupling holes at the ends of the PVC pipe by a

lathe. When the current meter was suspended at its correct depth, the top

drill hole of the pipe was then aligned to a fixed point in the camp area. A

simple correction angle could then be applied to the fixed-mast data relating

their direction to the camp azimuth.

Profiling instrumentation consisted of a Tsurumi-Seiki Co., Ltd.

(TSK) underwater unit with a Savonius rotor, directional vane and pressure

sensor. The unit was raised and lowered at 5 meters per minute by an electric

8
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winch. The rate was chosen after several experiments to determine rotor

response with different axial velocities. Current direction in this instru-

ment was referenced to an internal magnetic compass. The direction vane

follower and compass were both operated on the "light encoding disk" prin-

ciple and were therefore not subject to unnecessary drag caused by the usual

wiper arm friction. Low bearing friction and viscosity of the fluid surround-

ing the compass were the only components of drag on the directional system.

This is an important factor since the horizontal component of the earth's mag-

netic field is so weak at these high latitudes.

Data from the PCM were simultaneously recorded on an analog chart

recorder with speed, diredtion and depth versus time and on the AIDJEX dig-

ital data logging system (DDL). The data pertaining to the fixed-mast cur-

rent meters were also recorded on the AIDJEX DDL system as well as on a

multipoint recorder. The scan rate of the DDL (30 seconds) was acceptable

for sensors obtaining long time series such as the fixed-mast current meters,

but was not fast enough for the rapidly changing signals of the PCM.

Magnetic declination was measured one or more times each day at all

the camps. These measurements were calculated by a relationship between

the true and magnetic bearings of the camp azimuth. The camp azimuth was

defined as an imaginary directed line passing through the A and B antennas

of the satellite navigation system. The bearing of the camp azimuth, as re-

lated to true north, was determined by sun shots taken by the meteorologists.

The magnetic bearing was obtained using an accurate surveyors compass

placed directly in line with the camp azimuth. Magnetic declinations taken

in this manner were good to plus or minus one-half a degree.

9
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A total of 2084 PCM stations were obtained at the four camps over the

yearlong duration of the program, each station consisting of an uptrace and

downtrace. Of these, 1174 stations were useable. Stations that were not

acceptable had relative currents that were below the threshold velocity of the

instrument (approximately 5 cmisec). Table I shows the breakdown of the

total stations at each of the camps with those used in the final data reports.

A listing of all the stations taken at the camp along with other associated pa-

rameters (dates, position, ... ) is reported under the section "PCM STATION

LISTING."

10
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PCM RELIABILITY

Generally, all of the stations that have been processed show good

coherence between the uptrace and downtrace of the relative velocity profiles

on the scale of 10 meters or more. In many cases, the short wavelength

structures can be followed from one station to the next. No spectral studies

have, as of yet, been completed on the data to statistically confirm these ob-

servations. It appears, however, that repeatability of the data is very good

on the scale of 20 meters and greater.

Similarity of directional tracking between the down and uptraces was

rather good provided that the current speed was greater than 5 cm/sec. As

the speed increased, the tracking of direction became very uniform as can be

seen during any of the stations where rapid currents or eddies were observed.

Below the velocity of 5 cm/sec, the directional vane oscillates widely and the

coherence between traces falls off rapidly.

The one major problem associated with the PCM at all of the camps

was the sluggishness of the Savonius rotor when compared with the Savonius

rotors of the higher quality Hydro Products fixed-mast meters. We feel that

this problem, since it was observed at all of the camps, was inherent in the

design of the rotor system itself and was most likely due to bearing drag.

Because of this problem of velocity data being less than suggested manufac-

turers' limits, great care was taken from the beginning to calibrate the PCW

velocity readings at every station against the more accurate velocity readings

of the 30 meter fixed-mast sensor. Experience from a number of investigators

has shown that Savonius rotors with free bearings and uniform manufacture do

j 11
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not need individual tank testing. A universal calibration curve may be used

as was done for the Hydro Products meters. The Hydro Products Savonius

rotor units had exceptionally good bearings and were used for calibration.

The velocity of the 30 meter fixed-mast sensor and the velocity reading of the

PCM were recorded at the instant that the two sensors were at the same depth

level during each cast.

Calibration of the PCM velocity sensor was accomplished by linear re-

gression between the PCM and 30 meter velocity readings over fairly large

blocks of time (10 to 20 days). The blocks were separated into up and down-

traces due to the presence of a hysteresis effect caused by the raising and

lowering of the PCM through a current. In effect, a higher velocity would

be recorded at any one level on the uptrace because of the sensor being

pulled through the current. The opposite would be true for the downtrace.

Large data blocks were used in the calibration procedure in order to (1)

obtain enough data points over a wide range of speeds, and (2) average out)random noise due to turbulence and/or human recording errors.

The mean coefficient of determination was calculated to be 0.87 with

a standard deviation of 0.08. This indicates a high degree of correlation be-

tween the two Savonius rotors. Figure 6 shows a typical regression diagram

used in the calibration of the speed sensor at camp Big Bear.

12
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INITIAL DATA REDUCTION

In addition to the calibration of the raw velocity data of the PCM,

directional calibration, values for magnetic declination through time, and

digitized card decks of the analog data had to be obtained before reduction

could begin.

The PCM deck unit produced directional output from 0 to 540 degrees.

This was designed to eliminate the rapid pen oscillations (zero to full scale)

commonly seen on the 0 to 360 degree outputs when the directional vane oscil-

lates around 0 degrees. There were only two instances when rapid pen move-

ment was observed on the analog charts. The first being a shift from 0 de-

grees to 360 degrees and the second being a shift from 540 degrees to 180 de-

grees. On the basis of these exact shift points for 0 and 540 degrees, cali-

bration segments throughout time were made that would correct direction for

any linear drifts or sudden offsets. Linear drifting of the zero and full scale

settings in time were not evident or did not account significantly for changes

in the calibration data. As a result, bounds of the calibration segments were

chosen because of sudden offsets in the data.

Magnetic declination data were originally taken once every day at each

camp and then increased to once every time a profiling current meter station

was taken. Readings obtained from a surveyor's compass aligned with the

camp azimuth were combined with the camp azimuth determination closest in

time to determine magnetic declination. The reduction of magnetic declination

information was done so as to create blocks of data points that were separated

by naturally occurring breaks caused by rapid ice movement. An average

14
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magnetic declination was then computed for each data block representing a

short span in time for each camp. In these data sets, very few points fell

outside a span range of 3 degrees. Magnetic declination data obtained in

this manner were accurate to within the plus or minus 6 degree accuracy

limits for the PCM directional system. Final magnetic declination was then

used to convert original PCM directional data (referenced to magnetic north)

to true direction.

Finally, the analog chart records were digitized. Generally, each

station consisted of a downtrace and uptrace unless one or the other had been

rejected because of insufficient current or recorder problems. The points

taken for digitization on each of the output traces for speed, direction and

depth were the maxima, minima and inflection points, with enough points in

between to preserve the proper curvature. Digitization provides some

smoothing of the data. However, data with a scale length of greater than

2 meters were not affected.

The AIDJEX digital data logger tapes were not used for PCM data

reduction due to a predesigned sampling rate of the computer that was too

- slow for the rate at which the PCM was lowered. Excessive noise along the

data transmission lines also was a main factor in not attempting to reduce the

tape data for the PCM.

Due to the convention adopted by the AIDJEX staff and other insti-

tutions responsible for the reduction of data taken during the main AIDJEX

experiment, time was converted to a Julian calendar system with day I = 1

S.January 1975 and ending with day 500 = 4 May 1976. Throughout this data

report, time in AIDJEX days is frequently cited. A list of the AIDJEX days

J versus the normal Gregorian system was tabulated in Appendix 3.

3 15
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COMPUTER REDUCTION

Computer reduction involved quality control and calibration of the

relative traces. The final product was absolute velocity consisting of speed

and direction at one meter intervals to the maximum depth of the station.

The flow diagram shown in Figure 7 indicates the sequence of operations used

to produce the absolute data.

Once a large block of digitized data, consisting of up and down traces

was completed, several quality control programs were run on the data. These

programs checked for various mechanical and operator errors. After all prob-

lems were removed from the digitized decks, they were stored permanently in

computer files.

Relative data were then produced for the individual up and down

traces for all stations. Velocity and directional corrections were applied to

the data to provide calibrated speed referenced to the Hydro Products 30

meter fixed-mast sensor and correction for directional offset and full scale

parameters. Direction at this point in the processing was relative to true

north by the addition of magnetic declination. The data set being produced

consisted of individual traces with speed and direction at one meter intervals.

As reduction of the data proceeded, it became apparent that there

were frequent, rapid 360 degree directional rotations and corresponding fluc-

tuations in speed which were caused by the instrument (Figure 8). This

feature appeared to be inconsistent Nith. or entirely absent from, the associ-

ated up or downtrace for a given station. Further investigation of this fea-

ture showed it to be an artifact induced into the analog records by a rapid

16
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spinning of the sensor package. The reason for the rotation of the sensor

is believed to be a rapid untwisting of the stiff electrical cable after it had

been slowly turned by hydrodynamic forces acting on the slight asymmetries

of the instrument package.

Even though the direction system of the PCv1 was independent of the

instrument package, the viscosity of the fluid surrounding the compass pro-

vided enough friction to partially rotate it along with the instrument housing.

Approximately 70 percent of the analog traces had been digitized by

the time this feature had been recognized as an instrument-induced signal.

Nearly half of these digitized traces were associated with one or more of the

directional features. The remaining analog traces requiring digitization had

the rapid ,irectional rotation and associated speed fluctuation removed manu-

ally. This was accomplished by supplying a visual best fit curve to the valid

data before and after the deleted segment.

Due to the large portion of digitized analog traces that included this

rapid directional rotation, a visual editing program was created to remove them.

The editing program graphically displayed any uptrace or downtrace found by

the operator to contain one of these rotational features. The operator then

chose the upper and lower depth limits of the feature that was to be deleted.

A least squares best fit cubic equation was then calculated using three points

preceding the upper depth limit and three points following the lower depth

limit. In the special cases where the directional rotation began at the start

of the trace or concluded at the end of the trace. so there was no leading :Dr

succeeding three points. an average of the three points present was used to

* . . , . i, .,.ZIp
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fill in the deleted section. Figures 8 and 9 show an example of the editing

procedure of the program using a before and after profile of a station with

one of the rotational features.

The uptrace and downtrace were combined, by vector averaging,

to provide a single relative velocity profile. Speed and direction of the two

traces were converted to north and east components. After the averaging

of the individual components at one depth level, they were reconverted to

speed and direction.

The hysteresis effect was effectively eliminated by the addition of

the two traces. In several cases where only one trace existed for a station,

the profile was not altered to remove the hysteresis.

Vector averaging was preferred over arithmetic averaging of the

traces because of an added advantage during low speed addition. As pre-

viously mentioned, directional coherence falls off rapidly as the speed ap-

proaches the threshold velocity of the instrument. When combining the two

traces, it was preferable that the greater velocity observed would have more

weight in determining the final output at that depth level.

Vector averaging did possess its own inherent difficulties. The

majority of these problems were confined to low velocity addition. When the

traces to be added were significantly different in directions at the same depth

level (due to low directional coherence at low speeds), erratic directional os-

cillations or rapid shifts in direction would result when the vectors from both

traces would alternate dominance and thereby change the final output more to

the direction of the dominant vector. These shifts would sometime attain a

directional shear of 130 degrees per meter.

19
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The remainder of the cases providing the erratic directional output

were due to a rapid increase in speed (within a few meters) resulting from

the Savonius rotor attaining or passing its threshold velocity after being

motionless for some period of time. As before, if directions were signifi-

cantly different, an increase in speed would sometimes change dominance

from one trace to another, thereby providing rapid directional shifts.

Both of these problems, for the most part, were removed without

any major difficulty. This was accomplished by visually editing the section

of the trace causing the erratic directional output. Editing was done in the

same manner used to remove the sensor-induced rotational spikes. It should

be noted that the editing of the traces was not designed to eliminate the sense

of the rapid shift in direction, but rather to smooth the shift out to a more

realistic rate of change of direction. In general, rapid directional shifts

with a rate of change of direction less than 30 degrees per meter were left

untouched. For consistency throughout the data set, only one person fa-

miliar with this particular problem was used in the editing process. It was

felt that this provided as much continuity as possible in the decision making

from station to station and from camp to camp. Several stations from a few

of the camps were eliminated all together from the data set because necessary

editing would have been too severe.

Before the editing of the relative data was to commence, an attempt

was made to reduce the amount of visual editing by removing all relative speeds

and their associated directions less than or equal to 5 cm/sec from the data set.

This, however, turned out to be impractical because the total amount of rela-

tive data lost would have been on the order of 30%, as compared to the 1% - 2%

21
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that was to be edited. Another problem was the loss in continuity of speed

and direction in a profile every time a block of data less than 5cm/sec was

removed.

Finally, absolute velocities were computed by vectorially adding ice

velocities to the relative data.

Obtaining estimates for the position and ice velocity for a particular

station is given in greater detail in the section entitled "Interpolated Position

and Ice Velocity." Briefly, two cubic equations (related to latitude and longi-

tude) are uniquely defined by the satellite navigation data sets directly pre-

ceding and following the point in time related to the station. Each satellite

navigation set consists of the position (latitude and longitude), ice velocity

(north and east components) and the time of observation. Introduction of

the time of the station into the two cubic equations provides the latitude and

longitude of the station. North and east ice velocities are calculated using

the first time derivatives of the latitude and longitude equations respectively

at the time of the station.

Estimates (95% confidence limit) of the errors associated with latitude,

longitude, north and east ice velocities are also provided at the same time.

If the error estimates were too severe, the station in question was then re-

moved from the absolute data set.

Any data obtained while the sensor was in the hydro-hole were re-

moved. Ice thickness at the hydro-holes is indicated in Table 2. The first

data point to be kept as viable data was at the first integral depth value past

the bottom depth of the hydro-hole. Any data reported in the hydro-hole

I2



were given default values for speed and direction. The default values being

0.0 cm/sec and 999.9 degrees respectively.

TABLE 2

Camp Ice Depth Below Sea Level
at Hydro-hole (cm)

Caribou 300

Blue Fox 470

Snowbird 340

Big Bear 250

Vector addition still proved to be a problem in a small percentage of

the total number of data points. This problem was very similar to the diffi-

culties encountered during the low velocity vector averaging of the up and

downtraces, the only difference being that this occurred when speeds of the

relative data closely matched that of the added ice velocity vector. Generally,

this happened when ice velocities were low; however, problems did still exist

at speeds of 15 to 20 cm/sec. Even though the final result of the addition of

the ice vector to the relative data for these special cases was very similar to

the low velocity vector averaging problem, the physics of the situation was

not the same. The reason for the majority of the problems was a result of

the PCM being pulled through a nearly motionless part of the water column

(absolute speed less than 5 cm'sec). The result being a relative speed pro-

file of the negative of the ice velocity vector while the sensor was in that par-

ticular part of the water column. Upon the addition of the ice velocity vector

23



to the relative data, resultants are going to be very small and for the most

part directions will have very high shears attaining 180 degrees per meter.

Consider the example where two relative velocity vectors separated

by 1 meter in depth are being added to the ice velocity. Both vectors are

nearly opposite to the ice vector, however one of the relative vectors is less

than the speed of the ice and the other having a magnitude greater than that

of the ice. The result of the addition would be two successive small ampli-

tude absolute velocity vectors, each being out of phase with the other by

approximately 180 degrees.

Visual editing of the relative data was again employed to remove the

extreme directional shears from the absolute velocity profiles. There was,

however, one major difference in the editing policy, since directional shears

were generally larger than those seen in the averaging process and they were

due to a different situation. This procedural difference was to ignore the

directional shifts at low speeds and concern ourselves with trying to provide

correct decisions at the higher velocity directional shifts that would maintain

the integrity of the original analog profiles. As a result of this decision,

there are several profiles still possessing the high directional shears at low

absolute speeds. These directions are not to be taken as fact but rather

should be put in proper perspective with the directions at more reliable

speeds above and below the affected segment.

24
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INTERPOLATED POSITION AND ICE VELOCITY

Filtered and smoothed estimates for position and velocity through

time were recently updated for all of the AIDJEX 1975-76 manned camps

(Thorndike and Mlanley, 1980) to provide better resolution for inertial oscil-

lations of the ice motion. The initial Satellite Navigation report (Thorndike

and Cheung, 1977) indicated signal reduction in the data at the inertial per-

iod due to filtering of approximately 50% and was therefore not acceptable

for the reduction of certain parts of the oceanographic data set.

Positional estimates were not regularly spaced in time nor were they

at the times when the STD or PCM stations were started. Therefore it was

necessary that some software routine be constructed in order to give reliable

estimates of the position and ice velocity at the times of the stations in question.

Normally, 25 - 30 position fixes were recorded per day at each of the

four camps. The maximum number of fixes per day was close to sixty, and

the minimum was zero for a period of approximately five days. With these

wide variations in the spacing of the data, it became important to estimate the

standard error associated with the calculated positions and velocities. These

error estimates would then later become useful in the determination of the sta-

tion's relative importance for a particular application. Typical examples would

be the rejection of an STD station (position error of 1000 m) intended to be used

in a geostrophic calculation where the inter-station spacing is on the order of

2 kilometers, or relative velocity PCM stations being rejected for absolute data

processing when the ice velocity error was exceedingly high. Regardless of

the intended application, error estimates for both position and velocity are an

integral part of the data set.
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There are several methods to determine the position of a given camp

at a particular time, given precise estimates of the position and velocity be-

fore and after the time in question. The methods range from a simple ap-

proach of choosing the position fix closest in time to the station in question,

to more involved interpolation schemes.

Due to the presence of small to intermediate scale structures observed

in the AIDJEX oceanographic data set, precise position and ice velocity esti-

mates were required to resolve them as best possible. By defining a smooth

and continuous time dependent function X(t), of a positional parameter such

as 'atitude or longitude, four boundary conditions were initially provided by

the navigation data set. These known conditions were: X(tl), X(t2), X'(tl)

and X'(t2). In order for the function X(t) to be uniquely defined, X(t) by

definition must be cubic.

Once the time of the station was provided, cubic equations for both

latitude and longitude were defined using the navigation points directly be-

fore and after the station time in question. Position and ice velocity were

then obtained by substituting the time of the station into the cubic equations

and their first derivatives. North and east ice velocities being defined as

the first time derivative of latitude and longitude respectively.
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ERROR ESTILTES FOR INTERPOLATED POSITION AND VELOCITY

Error estimates for the parameters of latitude, longitude, north and

east ice velocities were broken into two time blocks consisting of summer and

winter data. This was done to take into account the more uniform movement

of the ice during the winter and the more variable movement in the summer

due to the presence of more open water and higher amplitude inertial oscilla-

tions. The summer block consists cf the data between 1 July 1975 (day 182)

and 30 September 1975 (day 273). All data outside the summer segment com-

prised the winter block. The breaking points in time were chosen on the

basis of the presence or lack of high amplitude inertial oscillations using the

entire plotted data set of ice velocities (Thorndike and Cheung, 1977) of which

Figures 10 and 1i are only a part. A major part of the summer data showing

the increased presence of high amplitude inertial oscillations can be seen in

part of Figure 10. In Figure 11, which comprises part of the winter data

block, there is a marked damping of inertial oscillations, showing amplitudes

less than a few cm/sec (days 409-422; 13-26 February 1976).

Errors were then calculated with the use of the Navigational data set.

The general processing system would be to take three sets of points from the

navigation data set, at times TI < Tu < T2, each set containing latitude, longi-

tude, north and east ice velocity and the time of observation, T1, Tu and T2

defined as follows:

Tu = time of the "unknown"

T I = time of first bounding data set
T2 = time of second bounding data set

I.la
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The first and third sets of data define the boundary conditions upon which

to formulate the cubic equations. The equations were then solved for the

latitude, longitude, north and east velocity at the time of the second naviga-

tion set. Errors were then calculated by finding the absolute difference be-

tween the estimated (cubic) and known (navigational) parameters. The re-

sulting errors for the four parameters were stored and statistically analyzed

at a later time.

The errors were analyzed to determine their dependence on the times

TI, Tu, and T2. If the bounding sets were separated by a relatively short

span of time, regardless of where the "unknown" is within the time bounds,

the errors for all four parameters are bound to be very small. On the other

hand, if the bounding sets are separated by a large time span, then it becomes

important to know where the "unknown" is located within the time bounds. As

the time of the "unknown" approaches either of the bounding sets, errors are

again going to be low. The same would be true for the reverse, i.e., as the

"unknown" reaches a time point roughly in the center of the bounding sets,

the errors should correspondingly get larger. Because of this, a time ratio

was calculated and stored with the errors made for a particular point in time.

The time ratio was defined to be the absolute difference in time between the

first bounding set and the "unknown" divided by the time difference of the

two bounding sets. This would be written as:

Time Ratio = Rt = (Tu - TI) '(T2- Ti) (1)

Time Difference = Dt = T'2 - Ti 2)
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Roughly 1200 "unknowns" were computed for specified maximum time

differences. The maximum time difference being the time difference between

the bounding data sets. Maximum time differences were confined to specific

limits, those being from 1-2 hours, 3-4 hours, 6-7 hours, 11-13 hours, 23-25

hours, and 47-49 hours. Each of these runs was computed for the summer

as well as the winter block, thus making 12 runs total. Each run computed

better than 4800 errors for the four parameters in question.

Data were then stored as to time ratio and plotted for each run and

parameter as shown in Figures 12, 13, 14 and 15. These figures show the

errors from the 11-13 hour run for the winter time block at camp Blue Fox,

each figure being one of the error parameters.

A sliding t-distribution of 30 points (95% confidence limit) was run

on each of the data sets to provide a statistical upper limit below which 95%

of the original data would fall. A least squares best fit quartic equation

was then computed for the 95% confidence limit points. The quartic equation

was chosen because of its ability to fit the data more closely at the time ratios

of 0.0 and 1.0. Quadratic and cubic equations would tend to provide exces-

sive negative error approximations as the bounding ratios were approaL.hed.

Figures 16, 17, 18 and 19 represent the 95% confidence limit points and cor-

responding best fit equation resulting from the original data sets shown in

Figures 12-15.

It has already been estimated that the error estimate (Ee) is defined

to be a function of two parameters as stated in equation 3.

Ee F(Dt, Rt) 3)
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The relative importance of these parameters can be seen in Figure 20. The

six error equations corresponding to the total time differences of 1-2, 3-4,

6-7, 11-13, 23-25, and 47-49 hours are shown in the figure. Error estimates

increase steadily with the total time differences previously listed. If we con-

fine the data to time ratios from 0.2 to 0.8, a more reliable estimate of the im-

portance of each parameter can be obtained. The justification being that all

of the curves have roughly the same low errors near time ratios of 0.0 and 1.0.

For any one of the curves in this range, the parameter of time ratio increases

the error estimates at most by a factor of 3. The parameter of time difference,

however, has a corresponding increase in error estimates as the cube of the

time difference. Representing this in a mathematical form, we have:

Ee % [(3Rt), (Dt 3 )] (4)

The concept of time ratio was kept in the error equation for two

reasons. The first reason was to give a worst error estimate, thereby al-

lowing the user to select the best possible data for analysis. The other

reason being that better than 95% of the error estimates provided to the

oceanographic data set used the 1-2 hour time difference equation. At

this low time difference, the time ratio becomes an equal contributor to es-

timation of errors.

Estimates of positions and velocities that required navigation points

separated by more than 50 hours were given error defaults of 9999.9, even

though the position and velocity were calculated. It was felt that after two

days, error estimates would be extremely high (see equation 4) and therefore

any resulting position and velocity must be flagged to indicate this. Error
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default data are extremely rare in this data set, however it should be reem-

phasized that the number is not to imply a quantitative estimate but designed

to be a flag indicating questionable data.

Error estimates are also calculated to be negative in the cases where

the time ratio is close to 0.0 or 1.0. These negative values are converted to

zero since at these low time ratios, realistic errors are considered to be close

to this value.

Coefficients for the 48 quadratic equations (4 equations per time band

6 time bands per season * 2 seasons) were then placed in a computer program.

With the maximum time difference and time ratio known, approximations to the

95% confidence error estimates could be computed for latitude, longitude, north

and east ice velocity. These error estimates for position and ice velocity are

in meters and cm/sec respectively. A copy of the subroutine listing that con-

tains the coefficients of the quartic equations is shown in Appendix 2.
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OUTPUT FORMAT OF FINAL DATA

This report consists entirely of absolute velocity data consisting of

speed and direction at one meter intervals from the base of the ice to the

maximum depth obtained by the sensor for any particular station. The

limiting depth for all stations was 200 meters and was always obtained during

low to moderate relative speeds in the water column. As the relative veloci-

ties increased, as in the presence of eddies, a significant portion of the 200

meters of cable was taken up in arching due to the increase in drag on the

cable and sensor. During some eddies, maximum sensor depth may only be

140 meters even though the 200 meters of cable was payed out.

Station information is provided in two different formats, one being

a numerical listing and the other being a plot of the profile. Two stations

are graphically shown on one page of the data report. On the facing page,

the corresponding numerical listing of the station is given.

The numerical data consist of other parameters relative to station

information and are in some cases abbreviated to save space. A list of the

parameters and their meaning is given in Table 3.

The plot of the absolute velocity profile is broken down into two

components consisting of speed (shown as the solid line) and direction (shown

as the dashed line). The speed scale is shown at the base of the profile.

Three different scales for speed are used in the plotting of the figures, their

respective maximum velocities being 25, 50 and 75 cm/sec. This was done to

show as much structure as possible for the speeds indicated on any one par-

ticular profile. The directional scale is shown at the top of the profile and
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is a fixed scale from 0 to 360 degrees relative to True North. The labeling

of the plot consists of the camp identification, the station number, the date

(day-month-year) and the time (GMT).

Iw
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TABLE 3

BIG BEAR First Main Camp

CARIBOU Satellite Camp later to become
Main Camp

BLUE FOX Satellite Camp

SNOWBIRD Satellite Camp

STATION Consecutive station listing as
shown on analog charts

(***M.) Maximum depth of station in meters

LAT Latitude of station in decimal degrees
N implying North

LONG Longitude of station in decimal degrees
W implying West

LTER Estimate of positional error for latitude
in meters

LGER Estimate of positional error for longitude
in meters

NIVEL North component of ice velocity (cm/sec)

EIVEL East component of ice velocity (cm/sec)

NVER Estimate of error in north ice velocity
(cm/sec)

EVER Estimate of error in east ice velocity
(cm/sec)

DPT Depth in meters

SPD Absolute speed in cm/sec

DRN Direction as related to True North.
Directions with a code of 999.9 imply
no direction reported.

Note ... All dates and times are given in terms of
Greenwich Mean Time.
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FEATURES OBSERVED IN ThE PROFILING CURRENT METER DATA

THE EKMAN LAYER

The concept of the planetary boundary layer, or Ekman layer, in

which the velocity turns with depth, was first stimulated by observations of

drifting ice. Nansen visualized the balances between surface wind stress,

friction and Coriolis force which lead to a spiral structure for the current

vectors. The idea was developed and set into mathematical form by Ekman.

This layer, in which momentum exchange occurs between ice and water, was

a central focus for the AIDJEX oceanographic program. Pack-ice forms a

particularly stable platform for observations of behavior in the Ekman layer

and observations of the Ekman spiral had been made from ice stations before

the main AIDJEX experiment.

The PCM data, however, do frequently show indications of a spiral

current structure in the upper layers. The vertically-integrated transport

of water in the Ekman layer must flow at a right angle to the surface stress.

In the northern hemisphere, the integrated flow is 90 degrees to the right of

the surface stress. Water at the ice base will move with the ice in the direc-

tion of surface stress. Thus the current vectors will spiral downward to the

right to achieve a net flow to the right. The exact shape of the spiral de-

pends on the conditions of turbulence and stratification in the layer. A

clockwise tendency for the current vectors is often noted in the current pro-

files. This indicates downward transfer of momentum from ice to water.

Counterclockwise turning is also observed but less frequently. It indicates

momentum transfer upwards from water to ice. Figures 21a and b show the

42



effect of ice velocity addition on an Ekman spiral. Figure 21a is the relative

trace showing a well developed directional shear of approximately 360 degrees.

With the addition of the ice velocity vector, the directional shear is somewhat

altered as seen in Figure 21b. Notice also the high directional shears at low

speeds.
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SUBSURFACE EDDIES

Swift mesoscale undercurrents are one of the most notable oceano-

graphic features observed in the AIDJEX area of the Arctic Ocean. The

eddy form of these undercurrents was first described as a result of the 1972

AIDJEX pilot program. The eddies were shown to be 10 to 20 kilometers

across and to extend in depth from 50 to 300 meters. The temperature and

salinity fields as well as the velocity field are perturbed by the eddies which

are baroclinic, and are approximately in geostrophic balance (Hunkins, 1974;

Newton et al., 1974).

The 1975-76 data confirm that eddies are a common feature of this

part of the Arctic Ocean. Maximum current speeds were found at depths

ranging from 80 to 190 meters. In some cases current speeds attain a maxi-

mum of 59 cm/sec. Examples of different eddies at the four camps are shown

in Figures 22-25. The 1972 data taken at discrete levels showed the rounded

shape of the current profile. PCM data also show this but with some small

scale structure imposed on the broad nose. There is often little directional

shear through the eddy as in Figures 22 and 23, although, in some cases, as

in Fig res 24 and 25, there may be directional as well as speed shear through

the eddy depth.

In Figures 26-29, current velocity vectors at four depths are plotted

as a function of time at each of the four camps. Ice velocity vectors are at

the top of each diagram. Days are numbered in sequence starting from

January 1. 1975 (see Appendix 3). Examples of eddies are evident at each

station. The eddy profiled in Figure 23 can be seen between days 151-135 of

45
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Figure 27. The eddy profiled in Figure 24 appears in Figure 28 between

days 130-154, while the eddy in Figure 25 appears in Figure 29, days 165-169.

The eddy observed at Caribou, Figure 22, can be seen in Figure 26 between

days 327 and 330. Although two of the eddies at different camps overlap in

time, the camps are separated by 170 kilometers and are undoubtedly two dis-

tinct features. The tendency of the current vector to rotate with time is at-

tributed to two reasons, (1) passage of the camp over the eddy, and (2) the

translational velocity of the eddy. In most cases, the velocity of the camp

is significantly greater than the velocity of the eddy. Profiles taken in this

case appear to "freeze" the eddy as the camp passes over.
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WIND-DRIVEN CURRENTS

Although the effect of wind-driven ice on the Ekman layer has been

observed for some time, deeper influences have not been as carefully studied.

Wind and ice motion are generally coherent over the array. There should be

a clear separation of spatial scales between the ice-driven current scale of

order 1000 kilometers and the baroclinic eddy scale of order 10 kilometers.

Clear examples of barotropic currents appear in Figure 26, days 324-327,

days 335-336, and days 368-370. These currents change little with depth,

in contrast to the highly barotropic eddies. Other barotropic currents ap-

pear intermittently in Figures 27-29. However, random observations of ed-

dies mask these currents below 50 meters. Such masking can be seen in

Figure 27, days 170-174, Figure 28, days 149-156, and Figure 29, days 157-

168.

Barotropic behavior is expected for currents generated by a transient

wind stress. As the stress becomes less impulsive, more baroclinic motion

would be produced. Thus the wind field at the largest time and space scales,

the mean winds over the Canada Basin, generate the large scale Beaufort gyre.

Short period wind and ice motion will result in a more barotropic response.

Barotropic motions would not be reflected in the temperature and salinity pro-

files. They are detectable only with current meters or absolute measurements

of surface height and tilt.
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APPENDIX 1

COORDINATE SYSTEMS

(kin) -

-2000 -1500 -1000 -500

NORTH POLE

-- 500
- 1 6 5 * 

o

700--1500

-120' -2000

-105 -
-900

Position measurements were made in geographical coordinates

(latitude north, longitude east). The smoothing operation was

done in a Cartesian system (x,.y) . where

x = 110. 949 (900 - latitude) cos (longitude) (kin)

y = 110. 949 (900 - latitude) sin (longitude) (kin)
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APPENDIX 2

Subroutine PSNVEL is written in FORTRAN IV-PLUS and is adapted

for use on a PDP 11/70. This subroutine calculates the position and ice ve-

locity from the data base of Thorndike and Manley, 1980. Error estimates

are also calculated for latitude, longitude, north and east ice velocities.

The coefficients for the error estimate equations are found at the end of the

subroutine. The actual equation is written as an arithmetic statement func-

tion near the beginning of the listing. Decimal AIDJEX days (Appendix 3)

are used extensively in this subroutine.
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C**** SUROIJTINE PSNVEL *8***8 AIDJEX PnSITION AND VELOCITY OFTERMINATION :8

C8888**8888;*::*:::::: PROGRAMMER -- TOM MANLEY 8888888888888888888888888888
C88888*8888;88*888888888488$88888 DATE -- AUG. 01, 1979 88888888888888888888888

C** SUBROUTINE PSNVEL INTERPOLATES BETWEEN TWO CONSECUTIVE POSITIONAL OBSER- *
C** VATIONS USIN, THE UPUATED SATELLITE-NAVIGATION DATA AS ITS BASE. INTERPOL- *
C** ATION IS BASED ON 2 CU8IC EQUATIONS DEFINED UNIQUELY SY THE HOUNDING NAV- *
C** IGATION POINTS. s
C** ERROR ESTIMATES TO THE CALCULATED POSITION AND ICE VELOCITY ARE SUPPLIED *
C** TO THE USER VIA THE 48 QUARTIC ERROR EQUATIONS DEFINED AT THE END OF THE s
C** SUBROUTINE.
C's ALL DATES AND TIMES USED IN THE NAVIGATIONAL DATA SET AND THIS SUBROUTINE*
C** MUST BE GREENWHICH MEAN TIME.

C*8INPUT PARAMETERS ARE AS FOLLOWS:
C** I) IUNIT -- THE UNIT NUMBER THAT THE PROGRAM WILL USE IN OPENING THE *
C8* APPROPRIATE CAMP FILE. 88 NOTE 88 THE UNIT WILL BE OPENED #
C*. PERMANENTLY UNLESS rHE CAMP IDENTIFIER CHANGES. IF THIS IS *
CIE TRUE, THEN THE CURRENT FILE WILL BE CLOSED AND THE NEW CAMP 4
C*8 NAVIGATION FILE WILL BE OPEN.
C*8 2) ICAMP -- THE CAMP ALPHANUMERIC(A2) I.E.--> BB.CB,BFSb,M1
C** 3) IDAY -- THE DAY IN QUESTION
C** 4) MON -- THE MONTH IN QUESTION
C*$ 5) IYR -- THE YEAR IN QUESTION *
C;' 6) ITIME -- THE TIME IN QUESTION

C8*OUTPUT PARAMETERS ARE AS FU6LOWS:
C** 1) RLAT -- LATITUDE OF THE STATION
C;' 2) RLON -- LONGITUDE OF THE STATION *
C;* 3) VELN -- NORTH VELOCITY IN CM/SEC
C8* 4) VELE -- EAST VELOCITY IN CA/SEC
C88 5) LTERR -- ERROR ESTIMATE(95% CONFIDENCE) ON LATITUDE( IN METERS)
C88 6) LGEHR -- ERROR ESTIMATE(95% CONFIDENCE) ON LONGITUDE( IN METERS)
Cs' 7) VNERR -- ERROR ESTIAATE(95% CONFIDENCE) ON NORTH VELOCITYCIN CM/SEC) 4
C*; 4) NEERR -- EPROR ESTIMATE(95% CONFIDENCE) ON EAST VELOCITY (IN CM/SEC)
C**

C's 88 NOTE *8 IF THE LAT. AND LONG ARE NOT AVAILABLE, THF SUBROUTINE
C** GIVES TNE FOLLOWING INFORMATION:
Cs* RLAT = 9999.9 RLON = 9999.9
Cs* VELN = 9999 9 VELE = 9999.9
088 LTERR = 9994.9 LGERR = 999q.9
C*u INERR = 9999,9 VEERR = 999Q.9
C**
C* $8 NOTE 88 IF THE BOUNDING SETS OF NAVIGATION DATA USFD TO DEFINE THE
C=*  CUBIC EQUATIONS ARE MORE THAN 50 HOURS APART, POSITION AND ICE VELOCITY%
C** WILL BE PROVIDED. DEFAULT VALUES WILL HOWEVER BE ASSIGNED TO THE ERROR 4
C8* ESTIMATES AS FOLLOWS:
C** LTERR= 9999.9 LGERN = 9999.9
C' VNERR = 9999.9 VEERR = 9 9.9

C;; PARAMETERS THAT ARE NOT TO BE CHANGED BY THE USER DURING A RUN: -
C8* 1) FILE -- INDICATES THE FILE HAS ALREADY BEEN OPENED
C** 'YES' IF TRUE, 0 IF NO
Cv* THIS CUTS Oo4N ON 'rHE AMUUNT OF TIME SPENT OPENING AND CLOS-
C"* ING THE FILE.
C** 2) ICMPCK - INTEGER CAMP CHECK VARIABLE. THIS HOLDS THE ID "CODE" OF THE '
C'8 CAMP NU4BER 4HOSE NAVIGATION FILE IS CURRENTLY OPENED.
C"t IF ICMPCX AID ICAMP DO NUT AGREE. THEN THE CURRENT FILE
C"* IS CLOSE0 AID THE NE4 NAVIGATION FILE CORRESPONDING TIl THE
C"* NEW CAMP ID "ICAMP" IS OPENED. ICMPCK IS THEN CHANGED TO
C*s iCAMP.
z48 3) IDBSE - THE INTEGER rHAT HOLDS THE BASE DAY SUBTRACTION CONSTA:4T
C I USED BY THE SUBROUTINE Tri DETERMINE THE LOCA'rI0'i CF ALL THE
Cv DAYS I' THE NAVIGATION FILE. - ------ > UNDER 40 CIRCUMSrANCES
C*3 SHOULD THIS VARIABLE BE CHANGED DURING A RUN ON A'iY 'NE CamP'
C"* 4) IYRBSE - THE INTEGER THAT HOLDS THE BASE YEAR UPON wHICH TE JULIAN
C** DAY IS DETERMINED. rHE BASE YEAR IS DETERMINED THROUGH THE
C** SUBROUTINE "CPCODE" AS ONE OF THE OUTPUT PARAMETERS. BASE
C** YEARS WILL CHANGE 4ITH THE CAMPS SUCH AS THE 4AI4J AIDJEX
C8$ EXPERIMENT BEING BASED ON THE YEAR 1975. THE FRAM I DATA IS
C** BASED ON THE YEAR 1979. :z==:> UNDER NO CIRCUMSTANCE5
C* SHOULD THIS VARIABLE BE CHANGED DURING A RUN ON ANY ONE CAPP'

3T

________________________________________________ t -A:: r::: A::: :::::. ::::



C*s**
Cc*
C';

SUBROUTI'JE PSNVEL(rJ,4IT, ICAMP,IDAY,MON,IYR,ITT4E,FIIE,RLAT,RLnN,
1 VELN,VELE,LTERRLGERRVNERRVEERRDIC4PCKD IDBSE,IYPHSE)

IM~PLICIT RFAL*8 (Z)
REALSR RAD
REAL LTERH,LGEPR
BYTE FILNAM (30),*DIR CII)

CA* D1?ENSIL3N INAA4(4)

C*4 DEFINE A FUNCTION FOR THE QUARTIC ERROR ESTIOATES

G(E.D.C.BA.T)=A*T**4 + 8*T's3 + C*T**2 + DsT + E
C** SET AN ERROR CODE
C's

CALL ERRSET( 39, .TRUE., .FACJSE., .TRUE. ,.FALSE. ,100)
C's

DATA FILNAA4(30)/O/
RAD = OASIN(1.ODO.)/90.OD0

C**
C** CHECK TO SEE IF FILES ARE ALREADY OPENED
C**

10 IF((ICMPCK.EO.ICAMP) .AND4. (FILE *EQ. 'YES')) GO TO 77
IF((ICM4PCK.NE.ICAAP) .AND, (FILE .NE. 'YES')) GO TO 1.8
IF((ICMPCK.NE.ICAMP) *AND. (FILE *EQ. 'YES')) GO TO 15

15 CLOSE(U41TI N IfIT)
18 ECOOE(2),23 FILNAM) TCAXP
23 FORMAT( 'DB2: 131O,11JNAvDAT. ',A2)

ICNPCK =ICAMP

OPEN CUNIT=IUJrT,NAAE=FILNAM,TYPE='OLP)',
I ACCESS='DIPECTI,FORM='FORMATTED',RECORDSIZE=70)
FILE ='YE5'

C**::> FIND THE BASE YEAR FOR THE CAMP DATA
1 20
CALL CPCODE(ICAMP I ZCAMA8,IYRBSE)

Cs;:.> NOW FIND THE BASE JULIAN4 DAY THAT THE FILE OdAS BASED ON USING THE
C':> EQUATION IREC z (IJULDAY-IBASEDAY)47S -1

DO 27 IREC :1,2000
READ(IUNIT'IREC 20) RDAY
IF(RDAY .EO. 0.6) GO TO 27
IDY = RDAY
IDRSE = IDY -IFIX(((IREC-1)/75.)+.5)

0 TYPE 31, ICAMPIDY,IHEC.ID8SE
D 31 FORMATC2x,'CAMP-> ',A2,1 OAY/IREC/IDBASE=> ',316)

GO TO 2A
27 CONTINUE
28 CONTINUE

C;;
C** CALCULATE THE RECORD NUMBER OF THE FIRST NAVIGATION POINTS CLOSEST
C** TO THE TIME OF THE STATION IN QUESTION
C"*

77 CALL JUJJDAY(IDAY,MON,IYR,ITME, ItRBSEDAY)
IADY = ROAY
IRIEC = (IADY - IDBSE);75 + I

D TYPE 66 IREC,IADY,IAPER
0 66 FORMAT(lX,'IREC/IADY/IAP --- ' >',310)
C;;
C** CHECK FOR BAD RECORD NUMBER

IF(IREC .GE, 1) GO TO 79
45 RLAT = gq99.9

RLON = 99519.9
VELN = 9999.9
'JELE 2 9999,9

VER= 9994.9
VEERR = 9'99.
IrERR = 9999.9
LGERR 999.
GO TO 300

C's
C** READ THE RECORD
C**

79 READ(IIJNIT'IREC,20) OAYS,RLATS,RLONS,VELNS,VELES



20 FORMAT(2X, 3Fl2.6,2F5 .11

Cs* IF THE SP.GINNING RECORD, HAS NO INFORMATION Off IT, KEEP ICEETN
CS1* THE IREC COUNTER UNTIL A RECORD fjITH INFORMATION HAS BEFN FOUND

C IF(DAYS *NE. 0.0) Go TO 83
IREC = IREC + I
GO TO 79

C's
C** TURN THE DESIRED TIME INTO DECIMAL DAYS

C*83 IHR = ITIME/10O.0 + .01
IMN =CITIME-(IHR*100))
DAYSTN = (IADtl1.0) +(IHR/24.0) +(IMN/1440.)
IDYSTH = DAYSTU

D TYPE 87, DAYSTU
D 87 FORMAT(2X,ITLME OF DESIRED POINT => ',F12.6)
CT-*
C's* CHECK TO SEE 414ICH RECURo ro READ FOR THE BOUNDING INFORMATION
Cl;*
C's

IF((IDYSTNaLT.IDBSE) .AND* CIDYSTN.GT.500)) GO TO 45
IF((IDYSTN.EO.IDBSE) *AND. (DAYSTN.LT.DAYS)) GO TO 45
IF(DAYSTN *LT. DAYS) GO TO 50
IF(DAYSTN .GE. DAYS) GO TO 100

C*" READ PREVIOUS NECORD

50 IREC =IREC -1

READ(IUJIT'IRFC,20) DAYE RLATEDRLONE.VELNE,VELEE
C**=)> CHECK FOR RECORD WITH NO DATA'LISTED ON IT

IF((RLATE.EQ.0.0).OR.(RLONE.E.a.0)) GO TO 50

4DY = DYS
RL =T RLT

VELEm VE

C" RAD ROLON ECR

REAO( IUNTLIECOER4)DY LTEROEVLE E

DAYS DA'
RLATE RLAT
RLDNS RG~N
VELNS VENE
VELES VELE
GO TO 100

Cs**
C** START FOTH0ING IEROAINFRLTTDEADVLCT OT
C's

1 00 IRCONTIEC
R YE43, DAYSRC,AT,RLONS, LNSE LAEROEVLNEE

D*=> HC FOR FRA(X' ROR 3F1.62F.1 NODT-i NI

D TYPE 24.EQAYC RLATE LONEVENEVE0. OT 0

ZT1 DAYS*84LE. DO)G T 0
DAYS= DA.E840DZLTS 2 DAT$600

C Rs L J4NG THOE VLT ERE L!O OG/E
VELNS VELNS/ 990D
VELES VELEE/1040.OOO(LTSAf
GOLE TO 100 /1~990O'DO(LT~Rc

C*59

-, TAToTHTM INTEROLATI ON FOR LATITUDE ~ AND VEOIY OT



* ZA'rNT = ZTS -Z CZ
ZAk? (ZvELNJE - ZVEL.,iS)/(3.Uo*ZC:9;2)
ZbIET =-2.DQ/(3.DOSZC)
ZB = (RLiATE-RLATS-ZVELNS'IZC-ZALP;Z-C**3 JI(ZEjT*C~3+ZC**2)

Z Z= Alp + ZET*ZS
RLA'T (ZA*ZATNT'$3 ) i(ZBZATNT$s2).(ZVELNS;ZATNT),RLATS
ZVELS (3.DO*ZA;ZATNT*2)+g(2.DOsZBsZATNT) 4ZVELNS

C..
C4* NO* FIGURE OUT THE LONGITUD)E AND THE VELOCITY EAST
C**

ZALP = (ZVELEE - ZVElEZS)/C3.DO.ZCv*2)
ZBET = -2.DO/(3.DO*ZC)
ZB = (RLONE-RLONS-ZJIELES;ZC-ZALP*ZC;.3)/CZBET*ZC*;3*ZC**2)
ZA = ZALP +ZBET4Zb
RLON CZA*ZATNT**3 )CZBAZANT*$2 )+(ZVELFS;9ZATJT)*RLONS
ZVELE (3.DO*ZA*ZATIT,*2),(2 .D0;ZI3ZATNT)1.ZVELES

Cs' CHANGE VEL BACK TO CM/SEC
VELN =Z'IEL.N1094900.DO
VELE =ZVELE$C11094900.DO*OCOS(RLAT*RAO))

D TYPE 57, RLAT,PUON,VETN,VELE
0 57 FORMAT(2X,'LAT/LON/VN/VE=> 1,4F10.4)
C*s
Cs CALCULATE TIME RATIO AND TOTAL TIME DIFFERENCE FOR ERROR ESTIMATES
C.'

SDIF = ZATNT/3 600E3
TDJIF =ZC/3.600E3
T =SDIF/TDIF

D TYPE 47, SDIFTDIF T

C*=> THIS IS ERRORR DATA EMN1AD2HUR

LGERR=O(.202941,-.468376E:1,.:903089E2 -. 179822W3,940866F2,T)
VNERR=O(-.264094E-1,.164596E1,-.67224 9E1,.976800E1,-,466455F1,T)
VEERR=O(.190725E-1,4182985El,-.574349E1 , 761949E1,-.374149Fi,T)
GO TO 300

110 IF(TDtF .GT. 4.00) GO TO 120
C*:=> THIS IS ERROR DATA BETAEEN 3 AND 4 HOURS

LTERROQ(.190364E1,-.466727E2,.553386E3,-.983192E3,.474845E3,T)
LGERR=0C.391057El,-.105472E3,.118601E4,-.209909E4,.101307E4,T)
VNERR=O(-.220280,.W8114E1,-.362110E2, .544938E2,-.267458E2,T)
VEERR=O(-.466398,.1.80550E2,-.748721E2,.114565E3,-.574648E2,T)
GO TO 300

120 rF(TDIF .GT. 7.00) GO) TO 130
C*;==> THIS IS ERROR DATA BETWEEN 6 AND 7 HOURS

LTERR=Q(-.434573E1, 810672E2,.156793E4 -335384E4, .170874E4,T)
LGERRQG(.406848E1,,:644965E2,,260012E4,-.53404E4,.25983bE4,T)

VEERROC(.461851E-1,.212938E2,-.807473E2, .119812E3,-.606414E2,T)
GO TO 300

130 IF(TDIF .GT, 13.00) GO TO 140
Cs*==> THIS IS ERROR DATA 3ETOEEN It AND 13 HOURS

LTERR=G(.55192491 ,-312993E2,.945618E4.-.188342E5,.939432E4,T)
LGERR:0C.203458E2-.355332E3,.1032b8E5,-.194064E5, .940165E4,T)
VNERQ(-.450471,.627998E2 -266976E3, .413131E3,-.?09935E3,T)
VEERR=k)(-.399648,.599848E2,-.24971bE3, .397004E3,-.197477E3,T)
GO TO 300

140 IF(TflIF ,GT. 25,00) GO TO 15n
C**=> THIS IS ERROR 5ATA BETWEEN 23 AND 25 HOURS

LTERR=Q(-.407233E2, 278504E4,.285207E4 - 116745E5,.6n5943E4,T)
LGERR=Q(-.170113E3,.6613s2E4,-.170675Ei,:213869E5,..110412E5,T)
VNERR:Q( .169221El, .297300E2,-.644268E2, .b57767E2.-.309871E2,T)
VEERRz(25074E,.164704E2,-.89819E,-.181705E2,.106707E2,T)
GO TO 300

150 IF(TDIF GCT. 50.00) GO TO 160
C~x==> THIS IS ERROk DATA BETwEEN 47 AND 49 HOURS

f(.GER=(-.341247F3, .155251E5.-.331577E5, .317b35E5,-. 140253E5,T)

dEERQ(.1434b6E,.85476,2E2,-.3541bbE3,.525771E3.-.2566'4F'3,T)
GO TC 300

160 CO'IT1-UE
C*$=:) SO DATA FOR TOIF rREATER THAN 50 HOURS, SET TO DEFAULT

VEERR= 9999.9
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VNERR= 9q99.9
LGERR= 9999.4
bTERR= 9999.9

GO TO 300
C$*== THIS IS THE "dINTFER DATA SET

205 IF(TDIF GCT. 2.00) GO) TO 210
C*== THIS 15 ERROK DATA 6FTwEFN 1 AND 2 HOURS

i,rER=(.24702,-.1405E1.239450E2,-.47573OE2,.24853SE2,T)
LCGERR=O(.377059,-.40831dE1..556174E2,-.1O8728E3,.56A677E2,T)
VNERR=Q(.735694E-2,..58285,-.274560EI,.40866E,-.2liO9E1,T)
VEERR=Q(.214845E-1,.138559El,-.561334E1,.830719E1,-.412921E1 ,T)
GO TO 300

210 IF(TDIF .GT. 4.00) GO TO 220
C**==> THIS IS ERROR DATA BETWEEN 3 AND 4 HOURS

LTERR=Q(.136832E1,-.282074E2,.306371E3,-.542406E3,.2b2633E3,T)
LGERR=Q(.286660E1,-.795060E2,.941639E3,-.171066E4,.846418E3,T)j
VNERR=Q(-.602995E-1 419834EI 17837OE2 275296E2,-.l3Si677E2,T)

GO TO 300
220 IF(TDIF .T, 7.003 Go rO 230

C*$==> THIS IS ERROR DATA BETWEEN4 6 AND 7 HOURS
LTEHR=(-.549117,.123283E2,.594540E3,-.118623E4,.577537E3,T)
LGEFRCQ.504752EI,-.10933'jE3,.182691E4,-.340773E4,.166563F4,T)
VNERR=0(-.798305E-2,.646701El,-.240102E2.351633F2,-.1762AIE2,T)
VEEFRP=OC-.740555E-1,.1409g5E2,-.53335bE2, .794973E2,-.4046b4E2,T)
GO TO 300

230 IF(TD)IF .GT. 13.00) r0 TO 240
C*=) THIS IS ERROR DATA 3ETWEEN 11 AND 13 HOURS

LTERR=Q(-.196154Et,.9323l3F.2,.2199RE4 - 251663E4,.12079F4,T)
ljGFRR=Q(-.128723E2, 528756E3,-..563005E , :i69304E3,-.136860E3,T)
VNERR=Q(-.137067, .114627E2,-.4641 15E20 .662067E2,-.320744F2,T)
VEERP=O(.3O528g,.il3l29E2,-.3407L1E2,.4lfj276E2,-.1872B7E2,T)
GO TO 300

240 IF(TDIF .GT. 25.00) Go TO 250
C**==> THIS IS ERROR DATA BET4EEN 23 AND 25 HOURS

LTERR=O(-.527531E2,.194688E4,-.397901E4,.326826E4,-.120623E4,T)
IGERR=0( 2093IFSE2, 402766E3,.411796E4,-.889242E4,.435372E4,T)
VNEPR=Q (.62677j9, .8.2293E1 ,-.279371E2. .367508E2,-. 172505E2 T)
VEERP=0 (.728756, .208960E2,-.899374E2..136860E3.-.682694E2,T)
GO TO 30n

250 IN(TDIF .GT. 50.00) GO TOJ 260
C**==> THIS IS ERROR DATA BEToEEN 47 AND 49 HOURS

LTERR=Q(-.154057E3, 517674F-4,-.147802E5, . 12932E5,-.S58630E4,T)
LGERR=OC.608849IE1,.148236E4,.770615E4,-.178465E5,.8h5979E4,T)
VNERR=G(.619958 843798El,-.2b5352E2,.351965E2,-.16561E2,T)
VEERR=Q(.110754 1.976905El,-.314405E2, .435897E',-.216462E2,T)
GO TO 300

C**==> NO DATA FOP TDIF GREATER THAN 50 HOURS, SET TO DEFAULT
260 VEERR= 9999.9

VNERR= 9999.9
LGERR= 9999.9
LTERRc 9999.9

C** IF THE ERROR ESTIMATE EQUATIONS PROVIDE NEGATIVE VALUES SET THEM
C't* To ZERO
C*.

300 IF'(LTERR *LT. 0.0) LTERR =0.0
IF(LGEFAR .LT. 0.0) LGERR =3.0
IF(VNERF .LT, 0.0) VNERR =0.0
IF(VEERR .LT. 0.0) VEERR =0.0

D TYPE 320, LTERR LG;ERR,VVERR,VEERR
D 320 FORMAT(2X, 'bT/L( /VN//VE ER== ,4FI0.4)

C** THATS ALL FOLKS
C*-!

RETURN
END
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APPENDIX 3

CONVERSION TABLE FOR AIDJEX DAYS

* TO CALENDAR DAYS

For the main experiment, AIDJEX adopted a convention of number-

ing days consecutively, beginning with day I = 01 January, 1975 and ending

with day 500 = 14 May, 1976.

In the conversion table, the first column is the AIDJEX day, the

second is the corresponding day of 1975 or 1976 and the third entry is the

calendar date.

.4
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RESULTS

The following section of the data report provides all of the absolute

velocity PCM data taken at camp Caribou during the 1975-76 Arctic Ice Dy-

namics Joint Experiment. Numerical listings and corresponding plots of the
j

data are given.
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PCM STATION LISTINGS

The station listing shows all stations taken at the camp along with

other pertinent information. Stations that have been digitized are indicated

by the word "PLOT", stations that are listed with "TSER" ("time series" or

" ") were not digitized primarily due to lack of relative speeds. Param-

eters at the top of each page imply the following:

CAMP Name of manned camp

STAT PCM station

CODE Processing code, see above

DY day

SMON month

YR year
TIME GMT time of station

AJXDAY AIDJEX day (decimal) of station,
see Appendix 3

DEPTH maximum depth (meters) obtained
at station

N. VEL north component of ice velocity
(+ implies North, - implies South)

E. VEL east component of ice velocity
(+ implies East, - implies West)

LATITUDE latitude of station in decimal degrees

LONGITUDE longitude of station in decimal degrees
(- implies West longitude)

LT. ERR error of latitude position in meters
LG. ERR error of longitude position in meters
VN. ERR error in north component of ice

velocity in cm/sec
VE. ERR error in east component of ice

velocity in cm/sec
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JOINT EXPER1.'IENT (AIDJEX) was designed to investigate the Arctic
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er manned satellite camps with a centrally located larger main
camp. The radio call signs of the satellite camps were Caribou,
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Blue Fox, and Snowbird, the main camp being designated Big Bear.
Profiles of relative current speed and direction were meas-

ured twice each day between the surface and 200 meters at each
of the four camps. A profiling current meter (PCM) with speed,
direction and depth sensors was lowered and retrieved with a
multi-conductor cable at a slow rate of 5 meters per minute.
Sensor signals were transmitted by cable to be recorded graph-
ically and digitally at the surface. Digital recording of the
data at a slow rate of 1 scan per half minute along with a low
signal-to-noise ratio made it preferable to manually digitize
the analog charts to preserve as much information as possible. -

The final data set consisting of absolute velocity profiles
of speed and direction was obtained by the vector addition of
the relative PCM profiles with the interpolated ice velocity
based on precise satellite navigation at the time of the obser-
vation. Data reduction problems included a hysteresis effect
between up and down traces due to cable angle, directional spikes
resulting from a rapid sensor package rotation, and spurious

results when low velocities are added vectorially.
Relative speed between the ice and water in the upper mixed

layer is often small indicating that this layer closely follows
the ice motion. Persistent large clockwise shears in relative
current direction occur sometimes in the mixed layer, attaining
up to 540 degrees of rotation. These are best seen in the rela-
tive velocity data. Upon the addition of the ice velocity vec-
tor, to produce absolute velocities, the smooth relative direc-

tional shear of the Ekman spiral then exhibits local shears and
speed minimums. This is due to the directions and speeds in the
spiral being opposite or nearly opposite to the ice velocity vec-
tor and of comparable magnitude.

One of the most striking features of the current profiles
is the appearance from time to time of swift currents below the
mixed layer with speeds attaining 60 cm/sec. The depth of maxi-
mum velocity ranges from 80 to 190 meters. Although evidence of
swift transient undercurrents had been observed in the Arctic
Ocean as early as 1937, it was not until 1974 that these cur-
rents were shown to be associated with mesoscale eddies.

This data report deals only with the absolute velocity data
obtained from the profiling current meter at Camp Caribou.PCM
data for Camps Blue Fox, Snowbird and Big Bear are in separate
volumes(Manley et al .,1980). Data reports pertaining to the
salinity-temperature-depth(STD)data taken at the manned AIDJEX
camps are also in separate volumes (Bauer et al.,1980).
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